Machine Learning for Motor Skills in Robotics


Invited talk

Speaker(s) : Jan Peters Event : Invitation of Jan Peters to Graz Place : Graz, University of Technology Date and Time : 04/23/2012, 10:30 am Abstract : Intelligent autonomous robots that can assist humans in situations of daily life have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. A elementary step towards this goal is to create robots that can learn tasks triggered by environmental context or higher level instruction. However, learning techniques have yet to live up to this promise as only few methods manage to scale to high-dimensional manipulator or humanoid robots. In this talk, we investigate a general framework suitable for learning motor skills in robotics which is based on the principles behind many analytical robotics approaches. It involves generating a representation of motor skills by parameterized motor primitive policies acting as building blocks of movement generation, and a learned task execution module that transforms these movements into motor commands. We discuss learning on three different levels of abstraction, i.e., learning for accurate control is needed to execute, learning of motor primitives is needed to acquire simple movements, and learning of the task-dependent "hyperparameters" of these motor primitives allows learning complex tasks. We discuss task-appropriate learning approaches for imitation learning, model learning and reinforcement learning for robots with many degrees of freedom. Empirical evaluations on a several robot systems illustrate the effectiveness and applicability to learning control on an anthropomorphic robot arm. A large number of real-robot examples will be demonstrated ranging from Learning of Ball-Paddling, Ball-In-A-Cup, Darts, Table Tennis to Grasping. Partners : TUG - Institute for Theoretical Computer Science

Recent Publications